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Moving boundary problem: heat conduction
in the solid phase of a phase-change material
during melting driven by natural convection
in the liquid
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Abstract—The purpose of this paper is to present an analysis of the melting process in a rectangular
enclosure, driven by the coupling of heat conduction in the solid phase and natural convection in the melt
of the phase-change material (PCM). The numerical solution of the problem which is presented here is
validated by comparison with precise experimental results. Heat conduction in the solid phase is shown to

significantly modify the kinetics of the melting process compared with previous studies on phase change
with isothermal solid phase.

0017-9310/86 $3.00+0.00
Pergamon Journals Ltd.

INTRODUCTION

IN RECENT years, the industrial applications of solid-
liquid phase change have attracted considerable atten-
tion in the process of melting (or solidification) in
enclosures. In most configurations, natural con-
vection takes place in the liquid phase [1-3] and there
is clear experimental evidence that, except at the very
beginning of the process, or for very low Prandtl num-
ber materials, the melting process is controlled by
convective heat transfer in the liquid phase. An
increasing number of experimental and numerical
studies have been performed on the coupled problem
of phase change with natural convection in the melt
layer [4-8]. In these studies, the solid phase is main-
tained at the fusion temperature and the influence of
heat conduction in the solid domain is not considered.
In many applications, either to control a solidification
process (as in crystal growth, for instance) or to
extract heat from the cold wall of the system (as in
latent heat storage [9]), the solid phase is maintained
at a temperature lower than the fusion temperature,
and transient heat conduction in the solid phase may
have considerable influence on the kinetics of the melt-
ing process. A numerical solution of this coupled
problem has been proposed for the solidification of
liquid metals [10]. The authors use the stream-
function—vorticity formulation to solve the flow fields
in the liquid phase for a limited range of Rayleigh
numbers ; their method leads to prohibitive computer
time for Ra (based on the width of the enclosure)
larger than 10°. Another limitation of this work is that
the tilt of the interface in the vertical direction is
assumed to be negligible, though the resulis show an

extremely strong curvature of the interface in the top
part of the enclosure.

The purpose of the present study is to give a deeper
insight into the coupling of the various physical
phenomena governing the melting process with non-
negligible conduction in the solid phase of the phase-
change material (PCM) and in the presence of natural
convection in the liguid phase. The numerical simul-
ation of the process that is presented here provides
the time evolution of the temperature fields in both
phases, of the flow field in the melt and of the shape
and position of the interface. The present method is
able to handle situations met in latent heat storage
systems, where the Rayleigh number (based on the
height of the enclosure) may be as large as 10°, while
the numerical methods already available are limited
to a range of moderate Ra. The numerical results
are compared to the measurements obtained on a
carefully designed experimental set. For this com-
parison to be a thorough validation of our numerical
method and to enable other authors to compare their
numerical results to our experimental results, detailed
information is provided here on the experimental
boundary conditions and on the experimental results
in general.

In Fig. 1 is shown a vertical cross-section (in the y—
z plane) of the rectangular enclosure containing the
PCM (melting temperature T} : the dimension in the
x-direction, normal to the plane of the picture, is
assumed to be large compared to the height H and
the width L of the enclosure, and the process may be
considered as two-dimensional in the y—z plane.

Initially, the enclosure is filled with the solid
material at uniform temperature 7, < Te. At time
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NOMENCLATURE
A aspect ratio of the enclosure, H/L Ste* Stefp*®
c* dimensional position of the interface * dimensional time
{from the hot wall) t dimensionless time, *v/H*
¢ dimensionless position of the To(T)) temperature of the cold (hot) vertical
interface, ¢*/H plate
C c*{L Te fusion temperature of the material
b length of the cell in the third v velocity, V*« Hfv
dimension Uy equation {16}
g intensity of gravity y*{z*)  horizontal (vertical) dimensional
Gr Grashof number based on H, coordinate
gf AT H3}v? y(2) horizontal {vertical) dimensionless
H height of the enclosure coordinate, y*/H (z* /| H)
j (&) unit vector in the horizontal (vertical) Y transformation in the liquid domain,
direction equation (6)
k thermal conductivity Yq transformation in the solid domain,
k* ratio kgfk, equation {10}
L width of the enclosure
Ly latent heat
n normal 1o the interface Greek symbols o v
Nug,(z) local Nusselt number per unit of {x the.rm al diffustvity
Sty . ; a* ratio ogfa
vertical surface, equation (13} 8/ L .
Nu average Nusselt number s expansion coefﬁemnt Oij the m‘.ﬁt
S verag AT, temperature difference in the liquid,
P ﬂ‘? NHS(L'){? - *Hpv? heTe
imensionless pressure, p v . . .
Pr Prandt! number of the liquid material, ATs ;Smp?ature difference in the solid,
viey yore oo
Rua Rayleigh number, based on H, Gr- Pr v I;met}?atw viscosity
/0t velocity of the interface in the n P . eqsxly ;
direction P rato ps/pu.
Sy ratio AT/AT,
Ste Stefan number, G, * AT, /L, Subscripts S (L) refer to the solid (fiquid) phase.

* == 0, the temperature of one vertical wall is raised
to a value T, > Ty, while the opposite wall is main-
tained at the initial temperature T, The top and bot-
tom walls of the enclosure are supposed to be
adiabatic. An air gap is left at the top part of the
enclosure to allow for the volumetric expansion of the
PCM upon melting.

For t* > 0, melting begins to take place near the
hot plate and initially heat conduction is the only heat
transfer mode. As the melt layer thickness increases
with time, natural convection appears in the liquid
cavity and the non-uniform heat transfer distribution
ajong the interface causes the melting front to move
faster in the top part of the enclosure, as observed in
previous studies [2, 5-7, 12]. As the interface moves
towards the cold plate, the temperature gradient in the
solid phase increases and the melting rate decreases.
Finally the melting front reaches a steady position
when the heat transfer from the liquid phase 1s com-
pensated by the heat transfer to the solid phase.

This process is studied in the following sections.
First, the numerical method used to solve the equa-
tions of the problem is described. Then details are
given on the experimental set used to validate the code,

and in the last section, the comparison of experimental
and numerical results is presented.

NUMERICAL SOLUTION

The numerical method used in this work has been
described and successfully compared to the experi-
ments in previous publications {11, 12] in the absence
of conduction in the solid phase {melting driven only
by natural convection in the melt). In this section, the
method is extended to the coupling with conduction
in the solid phase and the main characteristics of the
method are explained below.

Hypotheses and eguations
The following assumptions have been made:

1. The liquid material is an incompressible, New-
tonian fluid and the Boussinesq approximation is
made.

. The process is two-dimensional.

3. The thermophysical properties of the solid and

liquid phases are constant over the temperature
range of interest.
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F1G. 1. Problem definition.

4. The flow in the liquid cavity is laminar,
5. The density change of the material upon melting
is neglected.

The equations of natural convection in the liquid
phase are then written assuming the quasi-stationarity
of the melting process:

6. The convective flow is not strongly influenced by
the movement of the interface. It is shown in ref.
[13] that the order of magnitude of the fluid velocity
in the boundary layers is o, Ra"/*/H and in ref.
[12] that the melting front velocity in the absence
of conduction in the solid phase is of the order of
ay Ste*Ra''*/H. The ratio of these velocities is of
the order of Ra'/*/Ste*, which is roughly 10* for
the range of parameters considered in our study.

7. Atevery time step, natural convection is in a steady
state, since the characteristic time for convection
to reach steady state, tX = HL/ou, Ra"* [14, 15] is
small compared to the time scale of the melting
process. Indeed a lower limit of this time scale is
obtained in the absence of conduction in the solid
phase [12]: t¥ = HL/0.330, Ste*Ra"*. For the range
of Ste* considered in this study (Ste* < 0.2), t¥is
one order of magnitude larger than 2. Let us notice
that for the range of parameters considered in this
study ¢& is of the same order of magnitude as the
time required for the onset of convection in the
melt layer when starting from the solid at fusion
temperature: & = 4.5H?/a; Ste* Ra'? [12]. The
melting process is thus considered as a succession
of quasi-static steps, a steady-state solution of the
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natural convection equations being calculated in a
fixed liquid cavity at each step.

In the solid phase, the transient term in the con-
duction equation is conserved, since the characteristic
time of heat diffusion is of the same order of mag-
nitude as the time scale of the melting process.

The complete set of equations to be solved is then:

—in the liquid cavity

V.v=0 1
(V.V)V=V*V_VP+Gro,k @)
1
V.V)9, = F;WHL 3
—in the solid domain
05 ot _,
T EV Os. 4
At the interface, the energy balance equation is:
Pr 0s
* _ gk T
k*S . V6s—V0, ).n=p Sie 31 ®)

where ds/0t is the local velocity of the melting front
along n, the normal vector to the interface. Dirichlet
thermal boundary conditions are taken on the vertical
walls and at the interface, and the horizontal walls are
adiabatic. In the liquid cavity, the dynamic boundary
condition at the top wall is taken as full slip (free
surface condition), while a zero velocity condition is
assumed at the other walls.

Equations (1)—(5) have been set in dimensionless
form using the height H of the enclosure as the ref-
erence length and the kinematic viscosity for time and
velocity. The temperature difference considered in the
liquid is T, — T%, and in the solid Tz — T,. The dimen-
sionless parameters appearing in the equations are
defined in the nomenclature.

Transformation of coordinates

Liquid phase. According to the hypotheses pre-
sented above, the solution of the natural convection
equations at a given time is obtained assuming that
the position of the interface (the ‘cold wall’ of the
liquid cavity) is known. As the liquid domain is non-
rectangular, a transformation of coordinates is used
to map the irregular physical cavity onto a rectangular
computational space:

Z=z
Y=y/C(Z)} ©

where C(Z) = ¢*(z*)/L is the dimensionless position
of the melting front at height z. The transformed
equations are simplified by neglecting the cross terms
due to the non-orthogonality of the coordinate trans-
formation. Preliminary numerical tests have been per-
formed for natural convection in trapezoidal and
curvilinear enclosures [19] and the estimation of the
neglected terms shows that the relative error on heat
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fluxes at the interface is negligible if the tilt of the
interface on the vertical axis and its curvature are in
the range:

A2 sk

7 <03 %)

62*2 L3,

*
ge” < 0.3 and

oz*

The transformation of equations (1)~(3) using (6)
gives:

V.V=0
(V.O)V =V V_VP+Gro k

1, ®)
(V.V)g, = F;V 0,
where
. 1 8. @
V= “(37(7) 5;,] + 521(, (9)
and
gro_L ¢ 0

Sczy v Tz

Solid phase. A similar coordinate transformation is
used in the solid domain, which takes account of
the moving interface: a transient solution of the heat
conduction equation in the solid is desired and the
interface position is then a function of both z* and r*.
The movement of the interface leads to a deforming
grid in the physical domain and introduces a con-
vection-like term in the horizontal direction

L—y* L
H  L—c*(z* %)

Y= {10}

On the other hand, the complete transformation of
coordinates is kept in the solid phase. Indeed in the
liquid cavity, for the rather high aspect ratios that are
considered, the tilt of the interface can be mainly dealt
with by a very precise approximation in the boundary-
layer region, and a looser one for the bulk zone where
the influence of the irregular shape is much less
important. This is satisfactorily obtained with the sim-
plified transformation already mentioned {19]. On the
other hand, in the solid phase, the ‘deformation’ of
the isotherms due to the irregular boundary is stronger
and can be seen in the whole domain and the sim-
plification of the transformed equation could affect
the accuracy which is desired in the calculation of
heat transfer at the interface [20]. For this reason,
the coordinate transformation is not simplified in the
solid phase. The transformed heat conduction equa-
tion is thus:

00 Ys 6(1—-C) 90 _a*~2
E_T'—-C""'Tﬁ_f"’v B, (D
with :
- 1 a . d ¥s o(1-C) @
V“gi—é?}g”(ﬁ—r_—c—az" av. ) (2
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Interface equation. The interface position is cal-
culated on z = constant horizontal lines. The interface
equation is thus written in terms of the horizontal
velocity of the melting front, dc/0r and the dimen-
sionless heat fluxes per unit of vertical surface are
introduced :

dc*\
Nuy(2) = Vg .on_[1+ a7 ) (13)

The phase-change equation is then:

Pr dc
* — = p¥
k*S; Nug(z)— Nu, () l’p Sie dt

(14)
Solution procedure

The aforementioned assumptions suggest the fol-
lowing method of solution:

—solve separately the natural convection equations
in the fixed non-rectangular liquid cavity ;

—yuse the steady-state temperature field in the melt
to calculate the local heat transfer at the interface
(liquid side};

—solve simultaneously the interface motion and the
transient heat conduction equation in the solid
phase on a predetermined time step.

The initialization of the calculation uses a pure con-
duction one-dimensional model and is terminated
when the thickness of the melt layer reaches the critical
value for the onset of natural convection in the liquid
phase. Then, a first resolution of the convection equa-
tions is done in this initial rectangular cavity.

The numerical method uses the control volume
formulation : rectangular grids are defined on the
computational spaces representing the liquid and
solid domains and the transformed equations are inte-
grated over each control volume. The set of linear
equations is solved using an alternate direction algo-
rithm.

The finite-difference method used to solve the
natural convection equations is based on the hybrid
scheme proposed by Patankar and Spalding [16, 17].
The computational grid is generally irregularly spaced
to allow a good resolution of the boundary layers
near the walls without increasing the number of
nodes, since the Rayleigh number for this problem
may be larger than 10°.

When a converged steady-state solution of the natu-
ral convection equations is obtained for a given liquid
cavity, the local heat transfer along the interface is
calculated. This distribution is considered to be con-
stant over the time step chosen for the calculation of
the interface movement and heat conduction in the
solid phase. The situation is then similar to the prob-
lem studied in ref. [18]. The procedure implies that the
local melting front velocity is supposed to be known
when solving the conduction equation (11). Since the
temperature field in the solid phase is required to solve
the energy balance equation (14) which defines the
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movement of the interface, an iterative procedure is
used to solve the set of coupled equations (11} and
(14). It should be mentioned that the ‘fusion step’
(the time step during which natural convection heat
transfer at the interface is considered to be constant)
is divided into a number of ‘conduction steps’ which
can be taken as small as desired to ensure a good
precision of the calculation of the temperature field
in the solid phase. The iterative procedure for the
determination of the melting front shape and position
is repeated at each ‘conduction step’.

At the end of a “fusion step’ a new position of the
melting front is obtained as well as the time-dependent
temperature field in the solid phase: the natural con-
vection problem in the newly defined liquid cavity
may be solved again. The process is repeated until the
stationary position of the interface is reached. One
step of the computation needs about 500s on a
UNIVAC 1110 for a 21 x 23 grid in the liquid cavity
and a 14 x20 grid in the solid domain. A complete
simulation requires 15-25 fusion steps, the value of
the time step being gradually increased during the
melting process. The time step used for the calculation
in the solid phase is of the order of 0.02 (2 min).

EXPERIMENTAL SET

The experimental device is designed to study the
melting process with imposed temperature conditions
on the two larger facing vertical sides of the rect-
angular enclosure and adiabatic horizontal and ver-
tical terminal walls. The temperature fields in the solid
and liquid phases and the interface shape and position
are measured. The apparatus is conceived to provide
high precision results in order to allow quantitative
comparison with the numerical results obtained with
the simulation code described above. Special care has
thus been taken of the stability and homogeneity of
the imposed boundary conditions and of the accuracy
of the temperature measurements.

Description of the experimental cell

The experimental cell containing the PCM is a rec-
tangular parallelepiped of height H# =0.197m and
width L = 0.0688 m (Fig. 2). The third dimension
D =0.600m is large compared to H and L the edge
effects are thus negligible and the heat transfer is
expected to be two-dimensional.

The two large vertical walls consist of metal heat
exchangers through which water is circulated. The
water flow path in each exchanger has been machined
in a brass plate (hot wall) and in an aluminium plate
(cold wall) in order to get as uniform as possible a
temperature distribution on those two exchangers.
The heat exchanger has been calculated for the tem-
perature drop to be less than 0.2°C. To get rid of short
term temperature fluctuations due to the regulation of
the thermostats driving the cold and hot exchangers, a
0.5-m® well-insulated thermal bath is included in each
loop (Fig. 3). In the hot wall circulation loop high
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FiG. 2. Vertical cross-section of the experimental cell in the
y—z plane.

rates of energy extraction are expected. To avoid
effects of thermal stratification and spatial inhomo-
geneity in the hot thermal reservoir the water of the
bath is not directly circulated in the hot wall, however,
heat is extracted from the bath through a large mass
heat exchanger constituting an independent inner
loop in the heating system.

The four end walls are made of 0.04-cm-thick altu-
glass plates and the whole cell is carefully insulated
with 0.08-m-thick styrofoam. The insulation of the
vertical end walls is removable in order to allow the
photographic observation of the melting front in the
normal direction to the plane of interest.

Temperature measurements
Sixty K-type thermocouples are used to register the
evolution with time of the temperatures in the system :

—{).12-mm-diameter thermocouples are located in
the PCM. These thermocouples are tightened
between springs along the x-direction (normal to
the plane of interest) so that the junctions are
located in the same vertical mid-plane, constituting
a S5x35 array of regularly spaced measurement
points (Fig. 4). The five horizontal levels are named
A~E, from the bottom of the cell.

—At levels A, C and E, 0.12-mm-diameter ther-
mocouples are located in the hot wall and in the
boundary layer (I and 2 mm {rom the plate).
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Hot heat Cold heat
exchanger loop exchanger Loop
Thermal mass
0.5m3 ‘ l [ O
T X l __} Experimantal
cell
Thermal mass %
05m®
— [
R 7
Thermostat Thermostat . 7o
Fi6. 3. Circulation loops of the experimental device.
~ ' 2 3 4 5. Table 1. Thermophysical properties of n-octadecane
' l ] 1 I Temperature
e e R E Thermophysical range Value
I ; f 1 i property
! i
! ! | Fusion temperature 28.05
| i { I i Latent heat (J kg~') 241000
_ Thermal conductivity
e o o
T (Wm~'°C-Y liquid 0.157
I l i ‘ solid 0.390
A Specific heat (J kg='°C~") liquid 2200
' solid 1900
f I ‘ 1 1 Density (kgm™% liquid 7% 776.8
PN NP S — ¢ 1¥quid 30°C 775.5
o | T liquid 40°C 768.4
L ‘ ! l solid 814
= TR B o Kinematic viscosity
2 m?s™" 30°C 3.005% 10™°¢
4 } ] ] 35°C 4.468 % 10"
2l f—r~r——r—+ | 8 40°C 4013x107°
N
i ! b
l 2 } 1 { placed into a thermostatted box to reduce temperature
e b — A inhomogeneities on the connectors. Each channel
‘ } I i | (the thermocouple and the corresponding relay) has
Bottom 2+0Q been individually calibrated in the temperature range

Y

F1G. 4. Thermocouple locations in the experimental cell,
yr= 82x107'm z¥= 1.24x10"*m
P=233x107"m zf= 471x10"*m
yr=383x1077m zX= 820x10"'m
yE=3533x10""m z&=1172x10"m
PE=663x107 m  z¥F=1526%x10"*m

- On the sides of the end walls, in the insulation and
in the circulation loops, 0.20-mm-diameter
thermocouples are used to check the stability of the
temperatures and to estimate the heat losses of the
cell.

The cold junctions of the thermocouples are con-
nected to a 1-u¢V resolution voltmeter through a 64-
channel multiplexer and the data registered is moni-
tored by a mini-computer. The multiplexer has been

of interest (10-60°C). A precision of 0.1°C on the
temperature measurements could thus be reached.

Phase-change material

The PCM to be used in such experiments must be
pure and its thermophysical properties musi be known
with good precision. It must present good repro-
ducibility in the repeated fusion—solidification cycles
and low chemical reactivity. Among the possible can-
didate materials, 99.9% pure n-octadecane has been
retained as a PCM. The thermophysical properties are
reported in Table 1.

Experimental procedure

The preparatory phase of each experimental run is
of great importance, since the quality of the results
depends strongly on the homogeneity of the solid
material and on the definition of the initial conditions,
The experimental cell cannot be entirely filled in one
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time with the total mass of liquid octadecane, because
of the relatively large difference in density between the
liquid and solid phases that would create large air
cavities in the material during the solidification
process. Thus, the cavity is filled by successive liquid
layers, of the order of 1 cm, which are solidified before
the next layer is created.

During this filling process and the following 48h
necessary to get a uniform initial temperature
condition, the water of the cold loop is circulated
through both the vertical walls of the enclosure : the
initial condition is reached when all the thermocouples
in the material indicate the same temperature within
a 0.1°C margin. In the meantime, the temperature of
the hot reservoir is set at the preselected value chosen
for T, in the experiment.

At time * =0, the cold water is extracted from
the hot wall and hot water from the heating loop is
circulated through the wall. The most difficult aspect
of the experiment is to get the hot heat exchanger
temperature to perform a reasonably well-defined step
function when the experiment is started. Indeed, due
to the low initial temperature necessary for the con-
duction in the solid to be important enough, a large
AT =T,—T, is imposed and a very strong heat flux
is extracted from the heat exchanger in the first
minutes of the experiment. Meanwhile the effect of
the heat provided to the experimental set through the
hot exchanger affects the small air gap above the PCM
and also the lateral walls of the cell. As a consequence,
during the first half hour of the experiment, the sta-
bility and uniformity of the boundary conditions are
not perfect as shown on Fig. 9, but nevertheless, the
nominal temperature of the plate is reached within
5 min to better than 5%. After that period, for a
temperature step of the order of 10°C above 7%, the
stability of the hot plate temperature is of the order
of 0.1°C and the homogeneity is better than 0.2°C.

RESULTS AND DISCUSSION

In this section we will present and discuss the results
obtained in a reference experiment, and the com-
parison with the numerical simulation. Initially, the
experimental cell contains solid octadecane and the
heat exchangers are maintained at a temperature
Ty, =9.75°C. At time t* = 0, a temperature step of
about 26°C is applied on the hot wall. During the first
hour of the experiment, a transient evolution of the
wall temperature is observed, due to the high rate of
energy extraction from the hot plate at the beginning
of the process ; during the period, a 0.2°C decrease of
the hot wall temperature may be noticed, before a
steady value of 35.65°C is reached. In the meanwhile,
the temperature of the cold wall stabilizes at 9.85°C.
Under these conditions, the dimensional parameters
of the experiment are:

—temperature difference in the

AT, = 7.60°C

liquid phase:
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Table 2. Dimensionless parameters of
the reference experiment
Parameter Numerical value
Ra 0.846 x 10°
Pr 52.14
A 2.57
Ste 0.0691
k* 248
Se 2.40
o 2.67
o* 1.08
—temperature difference in the solid phase:

ATy =18.20°C
—initial height of the material : H# = 0.177 m.

The numerical code described above has been used to
simulate the experiment. The dimensionless para-
meters corresponding to the conditions of the experi-
ment are reported in Table 2.

Heat transfer kinetics

The position of the melting front at different times,
obtained by photographic recording (solid lines) and
numerical simulation (dashed lines) is represented on
Fig. 5. In a first period, the main trends of the melting
process are qualitatively similar to what could be
observed in previous experiments where the solid
phase is kept isothermal at T; (e.g. [2, 12]):

—conduction dominated melting at early times (the
melting front is parallel to the hot plate);

—then, convection driven melting and the interface
moves faster in the top part of the enclosure.

In a second period, the influence of heat extraction
from the cold wall significantly modifies the evolution
of the interface shape and position. Temperature
gradients in the solid phase are increasing with time
as the thickness of the solid material decreases. Thus,
the melting process slows down and the top part of the
interface does not exhibit the usual strong curvature,
which is typical of the absence of conduction heat
transfer in the solid phase. Then, after about 24 h, the
interface reaches a stationary position.

It can be seen in Fig. S that the agreement of the
numerical simulation with the experimental results is
very good all along the process. However, the com-
putation does not simulate the change in curvature
of the interface at the very top part of the enclosure,
a local discrepancy which does not depend on the grid
used in the convection calculation. This difference is
not due to the fact that the top thermal boundary
condition, which is assumed to be adiabatic in the
simulation, is disturbed in the experiment by the over-
flow of the liquid on the solid top surface. Indeed this
phenomenon, due to the volumetric expansion of the
material upon melting, has been simulated assuming
that the temperature of the top surface of the solid
phase is equal to the fusion temperature during a given
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Fii. 5. Time evolution of the melting front profiles: experi-
ment (sclid lines) and simulation {dashed lines).

time. The temperature evolution in the top part of the
solid is slightly affected by this disturbance, but the
curvature of the interface is not sensitive to this change
in the boundary condition. Thus a safe hypothesis is
that this local discrepancy is due to the simplified
coordinate transformation used in the natural con-
vection calculation, since the local angle of the front
with the vertical axis is higher than the maximum
angle for which our approximation is valid [19]. Let
us underline that the overall simulation of the melting
process is not affected by this local discrepancy.

The time evolution of the distance between the hot
plate and the interface may be observed with more
accuracy at the different levels corresponding to the
thermocouple locations (Fig. 6). Indeed the interface
reaches the position of a given thermocouple when
this thermocouple indicates the fusion temperature.
The experimental points on Fig. 6 are obtained both
from photographic recordings and from temperature
measurements in the material. These curves are to be
compared with the results obtained in a previous study
[12] where the solid phase was kept isothermal at the
fusion temperature. The experimental and numerical
results have shown that as soon as a separated boun-
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dary-layer regime has been attained in the liquid
phase, the local horizontal velocity of the melting
front is a constant, meaning that the local Nusselt
number defined by unit vertical surface [equation (13)]
is constant for a given z. We have shown {12] that the
only limitation for this result to be valid is that the tilt
and curvature of the interface be in a given range [see
equation (7)}. In the present experiment, this result
is perfectly valid. Thus the time-decreasing hori-
zontal velocity of the melting front in Fig. 6 shows
the increasing influence of the heat transfer to
the solid phase, which modifies the kinetics of the
phenomenon.

Without getting into the detailed time evolution of
focal Nusselt numbers, we give in Fig. 7 the time
variation of the dimensionless heat fluxes on both
sides of the interface and at the cold wall, that is,
of the average Nusselt numbers Nu;, Nug and Nuy
obtained by numerical simulation. The behavior of
the Nusselt number at the interface on the liquid side,
Nu,, is now well known {7, 8, 12} and it should be
mentioned that the constant value reached by Nuy
when the boundary-layer regime is established verifies
the correlation [12]:

N, = 0.33 Ra'/4. (15)

In the solid part, the Nug curve, to begin with, exhibits
a sharp decrease during a dimensional time interval
of the order of L%usn?, meaning that the dominant
phenomenon is the transient conductive regime
induced in the solid phase by the temperature step. In
fact, due to the rather low Stefan number, the melting
front velocity is low [see equation (14)]. Thus it is
not dominant in the heat transfer process as long as
transient conduction is present. This can be seen more
precisely by considering equation {11) and by intro-
ducing the ratio vg between the coefficients of 065/0 Y
and V*# in this equation:

ot L? JA(L—c*)

BT L—c* e

(s

With the help of the experimental values of
L —c*)/0r*, the order of magnitude of this ratio is
found to be vg = 0.5. Thus, if V?fs is important, the
diffusion term will be dominant, but, when approach-~
ing the steady regime, this result indicates that the
‘convective’ term in (11} will rapidly become domi-
nant. This is what appears on Fig. 7: after the initial
drop, Nus comes to a minimum and increases pro-
gressively as the thickness of the solid domain

decreases, while Nu, the Nusselt number at the cold
wall, rises slowly to the same value as Nus, indicating
that the diffusion term gets smaller and smaller. For
* > 5h, the relative difference between Nug and Nt
is already less than 10%.

This sequence of an initial phase strongly domi-
nated by transient conduction in the solid domain,
followed by a phase where heat transfer is induced
by the melting front movement is confirmed by the
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FI1G. 7. Average Nusselt number evolution at the interface
(Nuy, Nug), and at the cold wall of the cell (Nu,) : numerical
results.

detailed analysis of the temperature field in the solid
presented in the next section.

Temperature evolution in the material

The time evolution of the temperature of the ther-
mocouples located at level D is given for a 12-h period
(Fig. 8). In the solid phase, we notice that the first 2h
are characterized by a strong transient increase due
to the temperature step on the hot wall. Then the
evolution is slower; nevertheless, the temperature at
a given point still increases as long as the thickness of
the solid domain at this level is getting smaller.

It is interesting to notice by comparing the tem-
peratures on the same vertical line (Fig. 9) that the
heat transfer becomes significantly two-dimensional
only after 1-1.5h, that is, after the strong initial tran-
sient has vanished. The temperature evolution in the

solid is then driven by the two-dimensional movement
of the interface.

When a thermocouple is reached by the melting
front and enters the liquid phase, its behaviour is
exactly the same as in the classical isothermal solid
experiments; its temperature increases again sharply
while it crosses the thermal boundary layer along the
interface, and after a maximum in the inversion zone,
the temperature reaches a constant value cor-
responding to the stratification zone. The neigh-
bouring thermocouples of the same level reach the same
stable value after a similar evolution.

Temperature fields

The good agreement between the experimental and
numerical results concerning the heat transfer balance
at the interface (melting profiles, Fig. 5) is confirmed
by the comparison of the temperature fields in the
liquid and the solid phases.

Liquid phase. Figure 10 presents the temperature
distribution in the liquid phase at three levels (B, C
and D) at time ¢* =22.5 h. On the figure, the abscissa
of the point at the fusion temperature (8, = 0) is not
the same for the different levels, since it depends on
the local thickness of the liquid cavity. Because of the
high Rayleigh number, the boundary layers are very
thin and all the experimental points are located in
the stratification zone. In this region, the numerical
simulation is in very good agreement with the
measurements, although a rather coarse grid is used
in the central part of the cavity.

Solid phase. In the solid phase, the temperature
distribution is given at three different times for level
C (Fig. 11a) and level E (Fig. 11b). The calculation
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Fic. 9. Temperature evolution of the thetmocouples located on Jines 1 and 2 (horizontal levels C, D and E).

again gives an excellent simulation of the experimental
measurernents, even in this phase of the process, which
is characterized by a strongly transient evolution of
the temperature field in the solid phase. The local
discrepancy found at the upper level (E) at 1* =44
min is due to a sudden change in the upper thermal
boundary condition in the experiment. Indeed the
volumetric expansion of the material upon melting
causes the liquid to flow from time to time over
the surface of the solid phase, and the top boundary
condition is not adiabatic. The influence of this per-
turbation is limited to the upper part of the solid
domain, and it can be seen that the temperature dis-
tribution at mid-height (level C) is not affected by this
phenomenon.

1t is worth noticing that the numerical and expert-
mental temperature distributions in the solid phase
are almost linear at time #* = 2h. This confirms that
the transient response of the solid phase due to the
temperature step almost reaches a quasi-sieady regime
in 2h, and that afterwards the temperature dis-
tribution remains linear, the increase of the heat flux
being mainly due to the movement of the interface.

The simulated time evolution of the temperature
fields in both phases is illustrated on the isotherms
plotied on Fig. 12. The left part of the figure (Fig.
12a) gives the isotherms at the beginning of the melt-
ing process (r* = 35 min). It appears clearly on the
figure that the conduction regime is still dominant in
the Hquid cavity. In the solid domain, the shorter
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irregular shape of the interface, the abscissa of the 6, =0
point (the fusion temperature) is smaller at the lower
levels.

distance between the isotherms near the interface indi-
cates the transient regime in this phase. The isotherms
plotted on Fig. 12b correspond to a later time
(#* = 10h): it may be seen that the boundary layer
regime is fully developed in most parts of the liquid
cavity. In the solid phase, the isotherms are equally
spaced, showing that the quasi-steady regime has been
reached.

CONCLUSION

The very good agreement of the numerical results
with careful and precise experimental measurements

o
(a) Level C ﬂ%
O

Or—

8, —0.5L
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presented in this study show that the hypotheses used
in the numerical simulation are valid for the range of
parameters considered in this work (Ra= 10°
Pr =50, Ste < 0.2). These orders of magnitude are
typical of applications of phase change to latent heat
storage in closed rectangular cells. Under these con-
ditions, several hypotheses have been verified :

@ The natural convection flow in the liquid phase is
laminar.

@ The thermophysical properties of both the liquid
and the solid phases may be considered to be con-
stant, and the interface may be taken as a smooth
surface.

@ As far as convection in the melt is concerned, the
quasi-stationarity of the melting process allowed
by hypotheses 6 and 7 is a good approximation.
This can be extended to all the cases where the
duration of transient natural convection is neg-
ligible (hypothesis 7) as well as the effect of the
interface velocity on the dynamic boundary layer
(hypothesis 6). As shown earlier, this latter
approximation is correct if the inequality :

Ra'*|Ste* » 1

is satisfied. A sufficient condition for hypothesis 7
to be fulfilled is that

0.33Sre* « 1.

® The boundary-layer regime in the liquid cavity is
dominant over the major part of the melting
process. This is due to the fact that the ratio of
the characteristic time for the separation of the
boundary layers to the time scale of the melting
process is very low in the case under consideration.
Indeed the maximum value of this ratio (obtained

T

(b) Level E /y

2h03 ¢ 44’ [23' 6, -05
o
/ ©
o /
- 1 l L -
1% o1 0.2 03 195 o0 02 0.3
Vs Fs

~— Simulation

o Experiment
FiG. 11. Temperature profiles in the solid phase at different times : (a) level C; (b) level E. —— Simulation ;

O measurements. yg is measured from the cold plate, thus the abscissa of the 85 = 0 point (the fusion
temperature) is decreasing with time since the thickness of the solid domain is getting smaller.
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in the absence of conduction in the solid phase
f12D) is given by:

1815 = 1.5A/Ra""

a quantity which is much smaller than 1. Because
of this situation, the well-known correlations {12,
19] giving the local heat flux at the walls of &
rectangular cavity for internal natural convection
in the laminar regime can be used in our problem,
as long as the tilt of the melting front on the vertical
axis is small.

In the solid phase, the kinetics of the system are
mainly determined by the value of the parameter vy
[equation (18], the ratio of the interface velocity to
the diffusion velocity. In the case under study, the
valug of v, very close to 1, allows the definition of
two successive steps : the first one dominated by con-
duction in the solid ; and the second one by the move-
ment of the interface.

One of the main extensions to this study will be
to cover a wider range of dimensionless parameters,
corresponding to other applications of phase change,
and to determine the domain of validity of the pre-
ceding results.
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PROBLEME DE FRONTIERE MOBILE: CONDUCTION DANS LA PHASE SOLIDE D’UN
MATERIAU A CHANGEMENT DE PHASE LORS DU PROCESSUS DE FUSION COMMANDE
PAR LA CONVECTION NATURELLE DANS LE LIQUIDE

Résumé—Le but de cette étude est de présenter une analyse du changement d’état solide-liquide en

géometrie rectangulaire ou la fusion résulte du couplage entre la conduction dans le matériau solide et la

convection naturelle dans la phase liquide. La méthode de résolution numérique du probléme est validée

par comparaison avec des résultats expérimentaux précis. On montre en particulier I'influence de la

conduction dans le solide sur la cinétique de fusion, par rapport a des études antérieures ou la phase solide
est maintenue isotherme.

WARMELEITUNG IN DER FESTEN PHASE EINES LATENTSPEICHERMATERIALS
BEIM SCHMELZEN INFOLGE NATURLICHER KONVEKTION IN DER FLUSSIGKEIT

Zusammenfassung—Dieser Beitrag stellt eine Untersuchung des durch die Uberlagerung von Wirmeleitung

im Festkorper und natiirliche Konvektion in der Schmelze erzeugten Schmelzprozesses in einem rech-

teckigen Hohlraum vor. Die hier vorgestellte numerische Lésung des Problems wird durch einen Vergleich

mit exakten experimentellen Ergebnissen bestitigt. Verglichen mit Studien iiber Phasenwechsel an einem

isothermen Festkorper zeigt sich hier, daB die Wirmeleitung im Festkorper die Kinetik des Schmelz-
prozesses nachhaltig beeinfluf3t.

3AJAYA C MOJABUXHOW M'PAHULIEA: TEILJIOINTPOBOAHOCTh TBEPOON ®A3bI ITPU
TJIABJIEHUHU MATEPHUAIJIA, ECTECTBEHHASL KOHBEKLIUA B XKUAKOCTHU

Annotauna—IIpencTaBieH aHanM3 npouecca MIaB/IeHHS B MPAMOYIOJbHBIX MOJIOCTSAX C yYETOM TEILION-
POBOAHOCTH B TBepAoi (a3e H eCTeCTBEHHOH KOHBEKUMM B paciuiaBe MPH Ga3oBOM H3MEHEHHH B MaTe-
puane. IlpeacTasneHHOEe YHUCNEHHOE pelleHHE 3agadd OGOCHOBBLIBAETCS € MOMOLUbIO CPABHEHHA C
TOMHBIMH J3KCHEPHMEHTANTBHBIMA pe3yibTaTaMu. [TokaszaHo, 4TO y4eT TEWIONPOBOOHOCTH B TBEPAOi
tase CyLIECTBEHHO yNy4lIaeT ONHCAHHE KMHETHKY MPOLECCa MJIaBJICHUA B CPABHEHHH C NPEAbIAYLUIMMH
HCCNIEJOBaHUAMH B TIPEANOIIOKEHHN H30TEPMHYHOCTH TBEPAOH a3bl.

HMT 29:11-E



